Immunity Response of Chickens (Gallus Gallus Domesticus) in the Early Growth Phase Post Injection Lipopolysaccharide (Lps) E.Coli Atcc 25922

Authors

  • Wardza Izza Wulandari Magister Biology, University of Jember
  • Asmoro lelono Jember University

DOI:

https://doi.org/10.19184/bioedu.v23i2.53737

Keywords:

Immune system, LPS E.coli, Native Chicken, Blood Smear

Abstract

Local Indonesian chickens are an important source of animal protein, especially in small-scale farming. However, these farms often face challenges with poor hygiene, which can lead to infections. A common bacterial culprit is E.coli, a Gram-negative bacterium whose outer membrane contains lipopolysaccharide (LPS). As an endotoxin, LPS triggers an immune response in the host, leading to inflammation and fever.. This study investigated the effect of LPS injection on the body temperature and leukocyte differentiation as an immuno-competence respond of native chickens. The LPS solution was extracted using a hot phenol- water method and then injected into the abdominal cavities of chickens at 14, 28, and 32 days of age. Body temperature was measured 12 hours after each injection. The immunological respond of the chicks was investigated via leukocyte differentiation using bloodsmear analysis. The results showed a significant increase in body temperature in LPS-injected chickens compared to the control group. This difference persisted across all three injections, indicating that LPS effectively stimulates the immune system. Additional support for immune stimulation came from the leukocyte differential, which revealed a notable difference in Basophil percentage in the treated chicks. Interestingly, repeated LPS stimulation also led to significant changes in overall leukocyte differentiation. These findings collectively demonstrate that LPS injection successfully enhances the immuno-competence of chicks. We realize the unique character of the immunocompetence chicks could play a role as an important in avian immunty which warrant to study in future.

Downloads

Download data is not yet available.

References

Adriaansen-Tennekes, R., de Vries Reilingh, G., Nieuwland, M. G. B., Parmentier, H. K., & Savelkoul, H. F. J. (2009). Chicken lines divergently selected for antibody responses to sheep red blood cells show line-specific differences in sensitivity to immunomodulation by diet. Part I: Humoral parameters. Poultry Science, 88(9), 1869–1878. https://doi.org/10.3382/ps.2009-00159

Al-Aalim, A. M., Al-Iedani, A. A., & Hamad, M. A. (2022). Extraction and purification of lipopolysaccharide from Escherichia coli (local isolate) and study its pyrogenic activity. Iraqi Journal of Veterinary Sciences, 36(1), 45–51. https://doi.org/10.33899/ijvs.2021.128963.1614

Ardina, R., Sherly, R. (2018). Morfologi eosinophil pada apusan darah tepi menggunakan pewarnaan giemsa, wright, dan kombinasi wright-giemsa. Jurnal surya medika, 3(2), 5-12.

de Boever, S., Croubels, S., Meyer, E., Sys, S., Beyaert, R., Ducatelle, R., & de Backer, P. (2009). Characterization of an intravenous lipopolysaccharide inflammation model in broiler chickens. Avian Pathology, 38(5), 403–411. https://doi.org/10.1080/03079450903190871

Emílio-Silva, M. T., Rodrigues, V. P., Bueno, G., Ohara, R., Martins, M. G., Horta-Júnior, J. A. C., Branco, L. G. S., Rocha, L. R. M., & Hiruma-Lima, C. A. (2020). Hypothermic effect of acute citral treatment during lps-induced systemic inflammation in obese mice: reduction of serum tnf-α and leptin levels. Biomolecules, 10(10), 1–18. https://doi.org/10.3390/biom10101454

Hassan, H. M., Fadel, M. A., & Soliman, M. A. (2020). Evaluation of a modified method of extraction, purification, and characterization of lipopolysaccharide (O antigen) from salmonella typhimurium. Veterinary World, 13(11), 2338–2345. https://doi.org/10.14202/VETWORLD.2020.2338-2345

Hidayat, C., & Asmarasari, S. A. (2015). Native Chicken Production in Indonesia: A Review Produksi Ayam Lokal di Indonesia : Sebuah Ulasan. Jurnal Peternakan Indonesia, Februari, 17(1).

Ismoyowati, I., Darmanto, A., Tugiyanti, E., Suhartati, F. M., Suryapratama, W., Sodiq, A., Saleh, D. M., & Sumaryadi, M. Y. (2022). The effects of native chicken strains and feed addives on immunity, kidney functions, and blood protein. Journal of the Indonesian Tropical Animal Agriculture, 47(4), 277–289. https://doi.org/10.14710/jitaa.47.4.277-289

Lelono, A., Dei, A., Laensugi, G., & Arimurti, S. (2024). Does the chick of domestic chicken (Gallus gallus domesticus) in early development would be able to withstand the injection of crude LPS? Life Science and Biotechnology, 2(2). https://doi.org/10.19184/lsb.v%vi%i.53503

Lelono, A., & Surya, R. (2023a). Salmonella typhimurium injection as an immunostimulant: Study on chickens (Gallus gallus domesticus). In Life Science and Biotechnology (Vol. 1, Issue 2).

Mehrzad, J., Shojaei, S., Keivan, F., Forouzanpour, D., Sepahvand, H., Kordi, A., & Houshmand, P. (2024a). Avian innate and adaptive immune components: A comprehensive review. Journal of Poultry Sciences and Avian Diseases Journal, 2(3), 73–96. https://doi.org/10.61838/kman.jpsad.2.3.7

Møller, A. P. (2010). Body temperature and fever in a free-living bird. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 156(1), 68–74. https://doi.org/10.1016/j.cbpb.2010.02.006

Mota-Rojas, D., Wang, D., Titto, C. G., Gómez-Prado, J., Carvajal-De la Fuente, V., Ghezzi, M., Boscato-Funes, L., Barrios-García, H., Torres-Bernal, F., Casas-Alvarado, A., & Martínez-Burnes, J. (2021). Pathophysiology of fever and application of infrared thermography (Irt) in the detection of sick domestic animals: Recent advances. In Animals (Vol. 11, Issue 8). MDPI AG. https://doi.org/10.3390/ani11082316

Noviyani, A., Lelono, A., & Si, M. (n.d.). THE EFFECT OF INCREASING TESTOSTERONE AND LPS INJECTION TO THE CHICK OF DOMESTIC CHICKENS (Gallus gallus domesticus) IMMUNITY AND GROWTH. https://doi.org/10.19184/bioedu.v19i2.xxxx

Parmentier, H. K., Lammers, A., Hoekman, J. J., De Vries Reilingh, G., Zaanen, I. T. A., & Savelkoul, H. F. J. (2004). Different levels of natural antibodies in chickens divergently selected for specific antibody responses. Developmental and Comparative Immunology, 28(1), 39–49. https://doi.org/10.1016/S0145-305X(03)00087-9

Rawat, N., Anjali, Shreyata, Sabu, B., Bandyopadhyay, A., & Rajagopal, R. (2024). Assessment of antibiotic resistance in chicken meat labelled as antibiotic-free: A focus on Escherichia coli and horizontally transmissible antibiotic resistance genes. LWT, 194. https://doi.org/10.1016/j.lwt.2024.115751

Reisinger, N., Emsenhuber, C., Doupovec, B., Mayer, E., Schatzmayr, G., Nagl, V., & Grenier, B. (2020). Endotoxin translocation and gut inflammation are increased in broiler chickens receiving an oral lipopolysaccharide (LPS) bolus during heat stress. Toxins, 12(10). https://doi.org/10.3390/toxins12100622

Rezania, S., Amirmozaffari, N., Tabarraei, B., Jeddi-Tehrani, M., Zarei, O., Alizadeh, R., Masjedian, F., & Hassan Zarnani, A. (n.d.). Extraction, Purification and Characterization of Lipopolysaccharide from Escherichia coli and Salmonella typhi (Vol. 3, Issue 1).

Robinson, K., Assumpcao, A. L. F. V., Arsi, K., Erf, G. F., Donoghue, A., & Jesudhasan, P. R. R. (2022). Effect of Salmonella Typhimurium Colonization on Microbiota Maturation and Blood Leukocyte Populations in Broiler Chickens. Animals, 12(20), 1–15. https://doi.org/10.3390/ani12202867

Rohmadi, D., Harimurti, S., & Wihandoyo, W. (2021). Performance native chicken treated by different stocking density and litter type. Jurnal Ilmu-Ilmu Peternakan, 31(2), 95–101. https://doi.org/10.21776/ub.jiip.2021.031.02.01

Sali, W., Patoli, D., Pais de Barros, J.-P., Labbé, J., Deckert, V., Duhéron, V., Le Guern, N., Blache, D., Chaumont, D., Lesniewska, E., Gasquet, B., Paul, C., Moreau, M., Denat, F., Masson, D., Lagrost, L., & Gautier, T. (2019). Polysaccharide Chain Length of Lipopolysaccharides From Salmonella Minnesota Is a Determinant of Aggregate Stability, Plasma Residence Time and Proinflammatory Propensity in vivo. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.01774

Susanti, F., Murtini, S., Wayan, I., Wibawan, T., Hewan, P., Kesehatan, D., & Veteriner, M. (n.d.). Respons Kekebalan Ayam IPB D1 yang Memiliki Gen TLR4 terhadap Infeksi Bakteri Salmonella enteritidis ( IMMUNE RESPONSE OF IPB D1 CHICKENS WITH TLR4 GENES AGAINST SALMONELLA ENTERITIDIS BACTERIAL INFECTION ). https://doi.org/10.19087/jveteriner.2020.21.2.208

Wang, H., Yang, F., Song, Z. wen, Shao, H. tian, Bai, D. ying, Ma, Y. bo, Kong, T., & Yang, F. (2022). The influence of immune stress induced by Escherichia coli lipopolysaccharide on the pharmacokinetics of danofloxacin in broilers. Poultry Science, 101(3). https://doi.org/10.1016/j.psj.2021.101629

Wei, S., Wu, K., Nie, Y., Li, X., Lian, Z., & Han, H. (2018). Different innate immunity and clearance of Salmonella Pullorum in macrophages from White Leghorn and Tibetan Chickens. European Journal of Inflammation, 16. https://doi.org/10.1177/2058739218780039

Wigley, P. (2014). Salmonella enterica in the chicken: How it has helped our understanding of immunology in a non-biomedical model species. In Frontiers in Immunology (Vol. 5, Issue OCT). Frontiers Media S.A. https://doi.org/10.3389/fimmu.2014.00482

Withanage, G. S. K., Wigley, P., Kaiser, P., Mastroeni, P., Brooks, H., Powers, C., Beal, R., Barrow, P., Maskell, D., & McConnell, I. (2005a). Cytokine and chemokine responses associated with clearance of a primary Salmonella enterica serovar typhimurium infection in the chicken and in protective immunity to rechallenge. Infection and Immunity, 73(8), 5173–5182. https://doi.org/10.1128/IAI.73.8.5173-5182.2005

Wlaźlak, S., Pietrzak, E., Biesek, J., & Dunislawska, A. (2023). Modulation of the immune system of chickens a key factor in maintaining poultry production—a review. In Poultry Science (Vol. 102, Issue 8). Elsevier Inc. https://doi.org/10.1016/j.psj.2023.102785

Xie, H., Rath, N. C., Huff, G. R., Huff, W. E., & Balog, J. M. (n.d.). Effects of Salmonella typhimurium Lipopolysaccharide on Broiler Chickens 1.

Zenk, S. F., Jantsch, J., & Hensel, M. (2009). Role of Salmonella enterica Lipopolysaccharide in Activation of Dendritic Cell Functions and Bacterial Containment . The Journal of Immunology, 183(4), 2697–2707. https://doi.org/10.4049/jimmunol.0900937

Zhang, C. Y., Huang, J., & Kang, X. T. (2018). Resveratrol attenuates lps-induced apoptosis via inhibiting nf-κb activity in chicken peripheral lymphocyte cultures. Revista Brasileira de Ciencia Avicola / Brazilian Journal of Poultry Science, 20(4), 747–752. https://doi.org/10.1590/1806-9061-2017-0720

Downloads

Published

2026-01-22

Issue

Section

Articles